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QUANTIZED DATA–BASED DISTRIBUTED CONSENSUS UNDER
DIRECTED TIME-VARYING COMMUNICATION TOPOLOGY∗

QIANG ZHANG† AND JI-FENG ZHANG†

Abstract. Distributed average consensus (DAC) is investigated for multiagent systems (MASs)
with directed time-varying communication topology and quantized communication data. We propose
a communication feedback–based distributed consensus protocol suitable for directed time-varying
topologies to deal with the inconsistency between the internal state of each agent’s encoder and
the output of its neighbors’ decoder, and give rigorous analysis for the consensus of the MAS. The
consensus protocols are designed based on uniform quantizers with scaling. A finite lower bound
of the communication data rate between each pair of adjacent agents is obtained to ensure the
exponential consensus by properly choosing system parameters. In addition, the lower bound is
proved to be merely 1-bit for the directed fixed topology case, no matter how large the agent number
is. A numerical example is presented to demonstrate the results obtained.
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1. Introduction.

1.1. Motivations and related works. Recently, distributed control and es-
timation of multiagent systems (MASs) have gained increased attention among re-
searchers [14, 22, 19, 21, 8, 27, 24]. One common feature of these problems is the
distributed structure constraint on the communication network; that is, each agent
can use only the local communications with its neighbors and the dynamic proper-
ties of itself to adjust its behavior or modify its computation. Distributed average
consensus (DAC) is one of the basic problems in this area and, based on local infor-
mation, is aimed at determining how to design a protocol to ensure that all the states
of the agents converge to a common value. DAC has been applied to many practical
areas, such as flocking [21], formation control [8], distributed computation [26], sensor
information fusion [27, 24], etc.

Most of the works listed above assume that the communication channels involved
are ideal, i.e., that the communications among agents are error-free. But, in prac-
tice it is hard to avoid constraints on the communication channels, such as additive
communication noises [13, 18], packet losses [7], and energy and bandwidth limita-
tions [6, 17]. Sometimes, only integer-valued information instead of the real number
sequence is required to be transmitted. This needs information quantization, and the
energy and bandwidth constraints limit the communication capacity of the channels.
Thus, how to realize a distributed consensus with a limited communication rate and
quantized information is of great importance.
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In the control theory field, results on distributed quantized consensus have been
gradually increasing recently [16, 20, 6, 5, 9, 3, 2, 15, 17, 4]. The paper [16] con-
sidered the MASs with integer-valued states, fixed topology, and an undirected con-
nected communication graph, and gave a quantized gossip averaging algorithm, which
makes the agents’ states converge to an integer approximation of the initial state av-
erage with an error no greater than 1. Nedic et al. [20] considered systems with
directed time-varying topologies. Based on quantized information, they developed a
distributed consensus algorithm and obtained the relationship between the consensus
error and the system parameters. However, when the number of the agents increases
to infinity, to achieve a DAC the quantization levels are required to be infinite. Pa-
pers [5, 9] proposed an average-preserving quantized consensus protocol by using a
uniform quantizer for MASs with directed fixed communication topology. Under the
condition that each uniform quantizer have infinite quantization levels, it was shown
that the states of all the agents converge to a neighborhood of the initial state av-
erage. The relationship between the consensus error and the system parameters was
also analyzed. Paper [3] further developed an algorithm based on dynamic uniform
quantization but did not provide a theoretical analysis on either the convergence of
the algorithm or the impact of the quantization level on the convergence. Inspired
by the work [25, 10] of stabilizing a single linear time-invariant system with minimal
communication bit rate (channel capacity) for the undirected fixed topology case, [17]
answered the following basic question: To ensure an MAS is consensus, how many
bits of information does each pair of adjacent agents need to exchange at each time
step? It is shown that for any uniform quantizer with finite quantization levels, one
can always get an average consensus with an exponential convergence rate by properly
choosing the system parameters.

Although there is a substantial body of works on DAC based on quantized com-
munication data as stated in the above literatures, many problems are still unsolved.
For instance, in practice, the communication connectivity between agents may change
dynamically, due to the external disturbances from environments and the communica-
tion or sensing range limitations of the agents [23]. Thus, it is important to investigate
how to design a DAC protocol suitable for quantized communication data and time-
varying communication topologies such that an exponentially convergent consensus
can be achieved even with a finite communication data rate.

1.2. Contribution of this paper. In this paper, the DAC problem is investi-
gated for MASs with directed time-varying topologies and quantized communication
data. The dynamic of each agent is described by a first-order difference equation,
whose state is real-valued. The information that each agent transmits to or receives
from its neighbors is integer-valued and obtained by quantizing the real-valued state
via a noise-free uniform quantizer. The main contribution of the paper is summarized
as follows.

A DAC protocol suitable for time-varying topologies is developed. In contrast to
the undirected fixed topology case in [17], in order to keep the average of all agents’
states unchanged, similar to [4], here a communication feedback channel is introduced
into the dynamic encoder-decoder scheme, with which the agent can know whether or
not its neighbors have received the signals whenever they are sent. It is shown that
under the protocol designed, for a quite general class of time-varying topologies and
any uniform quantizers with quantization levels bigger than certain finite constant,
the MASs can achieve consensus exponentially provided the gain parameter and the
scaling function are properly chosen. In addition, for the directed fixed topology case,
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it is shown that if the topology is balanced and with a spanning tree, then for any
given uniform quantizer with finite levels an exponential average consensus can be
achieved by properly choosing the gain parameter and the scaling function. Thus, by
properly choosing the system parameters, a 1-bit quantizer for each agent can ensure
consensus of the whole MAS no matter how large the agent number is.

1.3. Organization and notation. The remainder of this paper is organized
as follows. In section 2, we present some notation on graph theory and describe
the problem to be studied. In section 3, we discuss the DAC problem based on
finite bit-rate communications, including the design of the consensus protocol and the
exponential consensus analysis. In section 4, we illustrate the results via a numerical
example. In section 5, we give some concluding remarks and discuss future works.

Below is a table of the basic notation to be used throughout this paper:
In the n dimensional identity matrix.
1n an n dimensional vector whose elements are all ones.

‖X‖∞ the ∞-norm of the matrix X .
A�B the Hadamard product of the two matrices A and B.

�a� the maximum integer less than or equal to the positive number a.
�a� the minimum integer greater than or equal to the positive number a.
b |j the jth entry of the vector b ∈ R

N.
xi(t) the state of agent i.
ξji(t) the internal state of the encoder Φji.
Δji(t) the output of the encoder Φji.
x̂ji(t) the output of the decoder Ψij .

h the gain parameter.
γ the exponentially decreasing rate of the scaling function g(t).
G the directed communication topology graph.

LG the Laplacian matrix of G.
N+

i the in-neighbors of agent i.
N−

i the out-neighbors of agent i.

2. Preliminaries and problem formulation. In this section, we first intro-
duce some preliminary notation on graph theory to be used throughout the pa-
per, and then give the formulation of the DAC problem over digital communication
channels.

2.1. Preliminaries on graph theory. Consider an MAS with N agents under
a fixed communication topology. The communications among agents are modeled by
a weighted digraph (communication graph) G = {V , EG ,AG} which contains a node
set V = {1, . . . , N} and an edge set EG ⊆ V ×V . A node i ∈ V represents the agent i,
and a directed edge (i, j) ∈ EG if and only if there is a communication link from i
to j, where i is defined as the parent node, and j is defined as the child node. Here,
we assume there is no self-edge (i, i) in the graph, i.e., (i, i) �∈ EG .

AG = [aij ] ∈ R
N×N is the weighted adjacency matrix of G with aij ≥ 0, where

aij > 0 if and only if (j, i) ∈ EG . For node i, N+
i = {j ∈ V : (j, i) ∈ EG} and

N−
i = {j ∈ V : (i, j) ∈ EG} denote its in-neighbors and out-neighbors, respectively.

The Laplacian matrix of G is defined as LG = DG−AG , where DG = diag{∑j∈N+
i
aij}.

The degree of G is defined as d∗ = maxi∈V{
∑N

j=1 aij}.
G is called a balanced graph if

∑
j∈N+

i
aij =

∑
j∈N−

i
aji for all i. G is called an

undirected graph if AG is symmetric. For an undirected graph G, the eigenvalues
of LG are denoted by 0 = λ1(LG) ≤ λ2(LG) ≤ · · · ≤ λN (LG). λ2(LG) is called the



QUANTIZED CONSENSUS UNDER TIME-VARYING TOPOLOGY 335

algebraic connectivity of G. The mirror graph of the directed graph G = {V , EG ,AG}
is an undirected graph, denoted by Ĝ = {V , EĜ ,AĜ}, with the same node set G, edge
set EĜ = EG ∪ẼG , and symmetric adjacency matrix AĜ = [âij ], where ẼG is the reverse
edge set of G obtained by reversing the order of nodes of all the pairs in EG , and
âij = âji =

aij+aji

2 [22].
A sequence of edges (i1, i2), (i2, i3), . . . , (ik−1, ik) is called a path from i1 to ik.

The graph is called strongly connected if for any i, j ∈ V there is a path from i to j.
A directed tree is a digraph, where each node except the root has exactly one parent.
A spanning tree of G is a directed tree whose node set is V and whose edge set is a
subset of EG .

As for the time-varying communication topology case, the interactions between
different agents at time t are modeled by a directed communication graph G(t) =
{V , EG(t),AG(t)}, and EG(t), AG(t), DG(t), LG(t), N

+
i (t), N−

i (t), d∗(t) have the same

meanings as in the fixed topology case, for instance, d∗(t) = maxi∈V{
∑N

j=1 aij(t)}.
For a given positive integer k, the union of k digraphs {G(i), i = 1, . . . , k} is denoted

by
∑k

i=1 G(i) =
{V ,∪k

i=1EG(i),
∑k

i=1 AG(i)
}
.

2.2. Problem formulation. In this paper, we consider the DAC problem for
an MAS with N agents, using quantized communication data. The dynamics of each
agent is described by the following first-order difference equation:

(2.1) xi(t+ 1) = xi(t) + hui(t), t = 0, 1, . . . , i = 1, . . . , N,

where xi(t) ∈ R and ui(t) ∈ R denote the state and control of the ith agent, respec-
tively; h is the gain parameter.

We assume each pair of adjacent agents use a digital communication channel to
exchange symbol information. Thus, the real-valued state of each agent should be
quantized first before it is transmitted. In this paper, the communication scheme
between each pair of adjacent agents consists of a dynamic encoder-decoder pair
and an unreliable digital communication channel. After encoding its real-valued
state, the agent i will send its encoder’s internal state to its ideal out-neighbors N−

i .
Since the communication link is unreliable, the out-neighbors are time-varying with
N−

i (t) ⊆ N−
i , which makes the communication graph time-varying. We denote the

communication graph at time t by G(t) = {V , EG(t),AG(t)} with EG(t) ⊆ EG , where
G = {V , EG ,AG} denotes the ideal communication network of agents without link
failures. The encoder and decoder are designed based on the uniform quantizer
q(·) : R → Λ = {0,±i, i = 1, . . . ,K},

(2.2) q(y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, −1/2 ≤ y < 1/2,
i, (2i− 1)/2 ≤ y < (2i+ 1)/2,

i = 1, . . . ,K − 1,
K, y ≥ (2K − 1)/2,
−q(−y), y ≤ −1/2,

where Λ denotes the set of quantization levels, and K is a positive integer. In this
case, the number of quantization levels is 2K + 1.

Based on the above communication scheme and system dynamics (2.1), the DAC
problem is to design a control ui(t) for each agent i (i ∈ V) using only local quantized
information to make the states of all the agents converge asymptotically to f(X(0)) =
1
N

∑N
i=1 xi(0), where X(0) = [x1(0), . . . , xN (0)]T .
For the above DAC problem, in the following section we mainly focus on how to

design consensus protocols, how to obtain the explicit lower bound of quantization
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levels, and how to prove the exponential consensus of the whole agent system by
properly choosing system parameters.

3. DAC under quantized communication data. This section is devoted to
the DAC under time-varying communication topology by using finite bit-rate com-
munications. To this end, we first give the communication scheme to be adopted,
and then construct a distributed control based on quantized communication data. Fi-
nally, consensus properties of the agent system are analyzed. The special case under
directed fixed topology is also discussed.

Compared with the communication scheme under the undirected fixed communi-
cation topology case in [17], the time-varying topology results in the following prob-
lem: When agent j encodes its state xj(t) and transmits the encoded data to its
ideal neighbor agent i ∈ N−

j , the transmission may fail due to the uncertainty of the
communication channel, which causes the decoder of agent i to not update its state
estimate of agent j, and causes the decoder’s output to not be the same as the internal
state of agent j’s encoder. Thus, different from the fixed topology case, the internal
state of the encoder of agent j is usually unknown to its neighbor j ∈ N−

i . To solve
this problem, we need to redesign the error-compensation–type protocol to make it
adapt to the time-varying communication topologies. The key idea is to construct
a suitable encoder-decoder scheme such that both the sender and receiver agent can
obtain the same estimate of the sender’s state even when the communication graph
is time-varying. Based on the state estimates known by both the sender and receiver,
the error-compensation approach [17] can then be applied to design the distributed
consensus protocol. Below, we first present the design of the encoder-decoder scheme,
and then give the formal statement of the consensus control.

At the sender side of the channel (j, i) ∈ EG , agent j (j = 1, . . . , N) encodes
its state by the encoder Φji and sends the output of the encoder to its out-neighbor

i ∈ N−
j . The encoder Φji ∈ Φj

�
= {Φji : i ∈ N−

j } is defined by

ξji(0) = 0,

Δji(t) = q
(
g−1(t− 1)(xj(t)− ξji(t− 1))

)
,

ξji(t) =

{
g(t− 1)Δji(t) + ξji(t− 1) if Δji(t) is received by i at time t,
ξji(t− 1) otherwise, t = 1, 2, . . . ,

(3.1)

where ξji(t) is the internal state of Φji, Δji(t) is the output of Φji to be sent to the
neighbor agent i, g(t) > 0 is a scaling function, and q(·) is the uniform quantizer
defined in (2.2) with 2K + 1 quantization levels. In this case, the communication
channel (j, i) ∈ EG is required to be capable of transmitting �log2(2K)� bits of data
without error at each time step.

At the receiver side of the channel (j, i) ∈ EG , agent i ∈ N−
j updates the output

of its decoder Ψij according to whether or not it receives Δji(t) and estimates the

state xj(t). The decoder Ψij ∈ Ψi
�
= {Ψij : j ∈ N+

i } is defined by

x̂ji(0) = 0,

x̂ji(t) =

{
g(t− 1)Δji(t) + x̂ji(t− 1) if Δji(t) is received by i at time t,
x̂ji(t− 1) otherwise, t = 1, 2, . . . ,

(3.2)

where x̂ji(t) is the output of the decoder Ψij at time t. From (3.1) and (3.2), the
same recursive definition of ξji(t) and x̂ji(t) with both zero initial values ensures
ξji(t) = x̂ji(t), t ≥ 0. Thus, we have constructed the same estimate of each sender’s
state at both the sender and receiver sides.
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Based on the above dynamic encoder-decoder scheme, under the time-varying
communication topology sequence {G(t), t = 0, 1, . . .} we can construct the following
distributed error-compensation–type consensus protocol:

(3.3) ui(t) =
∑

j∈N+
i (t)

aij(t)x̂ji(t)−
∑

j∈N−
i (t)

aji(t)ξij(t), i = 1, 2, . . . , N.

Remark 3.1. To apply the consensus protocol (3.3), each agent needs to know the
following information: the neighbor link weights, the output of its encoders and its
in-neighbors’ encoders, and the scaling gain function. From the discussion below, the
scaling gain function g(t) is designed off-line, which requires knowledge of the upper
bound of the initial states, the upper bound of the norm of the Laplacian matrices,
and the positive lower bound of the algebraic connectivity of the mirror graphs.

Remark 3.2. The dynamic encoder-decoder pair (3.1), (3.2) is a difference coding
algorithm with scaling, where the “prediction error” xj(t) − ξji(t − 1) is quantized
rather than the state xj(t). Generally, such difference coding schemes have advantages
in saving communication bits. Similar difference coding algorithms can be found
in [3], where the zoom-out and zoom-in constant parameters are used to adjust the
prediction error according to whether or not it exceeds the quantization domain. In
contrast, here we will design the scaling function g(t) off-line by properly choosing a
constant parameter. Other coding schemes that use a constant quantization step-size
to quantize the state directly can be found in [9, 16, 20].

Remark 3.3. One difficulty in the encoder-decoder pair (3.1), (3.2) is that agent j
needs to know whether or not its encoder’s output has been received by its out-
neighbor i ∈ N−

j . This problem can be solved by adding a communication feedback
as in [4]. In fact, by using a noise-free communication feedback channel, agent i can
send back a bit signal “1” to tell agent j that it has received Δji(t), or send back
a bit signal “0” to tell agent j that it did not receive Δji(t), or not do anything
and let agent j itself decide after a certain time period whether or not its quantized
signal has been received by agent i. In the undirected topology case, the above
communication feedback scheme is good enough for the realization of DAC, but in
the directed topology case, we have to use this feedback channel to let agent i know
the weight aji(t) of its neighbor j ∈ N−

i (t), which is not needed in the undirected
topology case.

Remark 3.4. In consensus protocol (3.3), dynamic properties of the interaction
topologies {G(t), t ≥ 0} consist of two aspects. One is the number of each agent’s
neighbors, and the other is the weight of each edge, which represents the variations of
relative reliability of each communication link at different times. By definition, when
i ∈ N+

j (t), we have aij(t) > 0.
Let

X(t) = [x1(t), . . . , xN (t)]T ,

δ(t) = X(t)− JNX(t), JN =
1

N
11T .

(3.4)

From (2.1) and (3.3), the closed-loop system can be described in the following
compact form:

(3.5) X(t+ 1) =
(
I − hLG(t)

)
X(t)− h

[(LG(t) � Λ(t)
)− (LG(t) � Λ(t)

)T ]
1,
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where X(t) is defined as in (3.4), Λ(t) = [λij(t)], and λij(t) is defined by

(3.6) λij(t) =

{
x̂ji(t)− xj(t), j ∈ N+

i ,
0 otherwise.

Below, we concentrate on analyzing the consensus properties of (3.5). The key
point is to prove that the quantizer (3.1), (3.2) is never saturated. Intuitively, this
can be ensured by choosing the decaying rate of the scaling function g(t) smaller
than that of the consensus algorithm without quantization. To this end, we make the
following assumptions on the directed time-varying communication graph sequence
and the initial states:

(A1) {G(t) = {V , EG(t),AG(t)}, t = 0, 1, . . .} is a balanced digraph sequence, and

there exist an integer h0 > 0 and a constant λ0 > 0 such that infm≥0 λ
h0

mh0
≥ λ0,

where λh0

k = λ2(LĜh0
k

), and Gh0

k =
∑k+h0−1

i=k G(i), and Ĝh0

k is the mirror graph of Gh0

k .

(A2) There is a positive integer T0, such that for any time instant t1 ≥ 0 and any
agent j ∈ N+

i , i = 1, . . . , N , j ∈ N+
i (t) holds at least once in [t1, t1 + T0).

(A3) maxi |xi(0)| ≤ Cx, maxi |δi(0)| ≤ Cδ, where Cx and Cδ are known nonnega-
tive constants.

Remark 3.5. Different from the connectivity condition on the gossip communica-
tion protocol used in [1], assumption (A1) does not need additional conditions on the
distribution of the random communication graph sequence. From [18, Lemma 4.1],
(A1) is equivalent to the periodical connectivity condition: there is a positive integer

h0 such that for any t ≥ 0,
∑t+h0−1

k=t G(k) contains a spanning tree. A periodical con-
nectivity condition is often used in the literatures of DAC over time-varying topologies
[14, 20]. Intuitively, it guarantees the existence of a finite time period such that for
any pair of agents i, j, starting from any time instant t, agent i can always influence
agent j in this time period only by local interactions among agents. This condition
is not necessary for the convergence of the distributed consensus algorithm. For in-
stance, under the ultimate connectivity condition, [19, 23] proved the convergence of
the distributed consensus protocol for the case of ideal communication data and an
undirected time-varying topology. However, we can show that assumption (A1) is a
sufficient and necessary condition to ensure an exponential convergence of the dis-
tributed consensus protocol for the case of ideal communication data and a directed
balanced time-varying topology. Actually, for system (2.1) and the consensus protocol
with ideal communication data

ui(t) =
∑

j∈N+
i (t)

aij(t) (xj(t)− xi(t)) , i = 1, 2, . . . , N,

we make the state transform y(t) = [y1(t), . . . , yN(t)]T = Ψ−1x(t), where Ψ =
[ 1√

N
1,ΨN×(N−1)], ΨN×(N−1) ∈ R

N×(N−1) satisfies 1TΨN×(N−1) = 0, ΨT
N×(N−1)

ΨN×(N−1) = I. Then, we have

y1(t+ 1) = y1(t),

y(N−1)(t+ 1) =
(
I − hΨT

N×(N−1)LG(t)ΨN×(N−1)

)
y(N−1)(t),

where y(N−1)(t) = [y2(t), . . . , yN (t)]T . Define the exponential consensus factor [3]:

ρ
�
= lim sup

t→∞
‖X(t)− JNX(0)‖ 1

t = lim sup
t→∞

‖XT (t)(I − JN )X(t)‖ 1
2t

= lim sup
t→∞

‖y(N−1)T (t)y(N−1)(t)‖ 1
2t .
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Then, to prove that the closed-loop system achieves exponential consensus, it is equiv-
alent to prove that y(N−1)(t) converges to 0 exponentially. Choose sufficiently small h
such that all eigenvalues of the nonnegative matrix hΨT

N×(N−1)LG(t)ΨN×(N−1) are no

greater than 1. Then, from [12, Theorem 2.3.2], a sufficient and necessary condition
for y(N−1)(t) converging exponentially to 0 is that there is a positive integer h0 such
that

inf
t≥0

λmin

{
ΨT

N×(N−1)

(
t+h0∑
k=t+1

LG(k)

)
ΨN×(N−1)

}

= inf
t≥0

λmin

{
ΨT

N×(N−1)L∑t+h0
k=t+1 G(k)ΨN×(N−1)

}
�= 0,

which is equivalent to assumption (A1).
Remark 3.6. In the case of the finite communication data rate, assumption (A2)

ensures that the encoder (3.1) and decoder (3.2) of each agent are not saturated. If
the quantization levels of each agent are high enough and ensure that the dynamic
encoder and decoder are not saturated, then we can get the consensus convergence
even without assumption (A2), but we cannot achieve the quantitative relationship
between the communication data rate and the associated system parameters.

Remark 3.7. Assumption (A3) gives an upper bound for the initial states and
initial consensus errors. In fact, the existence of Cx also implies the existence of Cδ;
that is, Cδ can be taken as 2Cx. However, in many cases, the upper bound of the
initial consensus error may be much smaller than 2Cx. If the upper bound of the
initial consensus error is used to estimate system coefficients, then more accurate
estimates of the associated coefficients are expected to be achieved. Thus, we use a
separate constant to denote the upper bound of the initial consensus error.

We now study the convergence property of the closed-loop system (3.5).
Theorem 3.8. Suppose assumptions (A1)–(A3) hold. For given positive con-

stants h, ε1, ε2, γ, and g0, let

K1(h, γ, ε1, ε2) :=

⌊
M1(h, γ, ε1, ε2)− 1

2

⌋
+ 1,

M1(h, γ, ε1, ε2) := max

{
1

2γ
,M

1
2 +M

1
2 γ−(T0+1) +

1

2
γ−(T0+2)

}
+

hd∗

γ
+ 2hd∗M

1
2 ,

M := M(h, γ, ε1, ε2) =
Nρh,ε1d

∗2ρh0

h,ε2

ε1γ4(γ2h0 − ρh,ε1)

2h0−2∑
j=0

(h0−|j−(h0−1)|)γj−2

·
j∑

l=0

Cl
jh

lLl +
Nρh,ε2d

∗2(1− γ−4h0ρ2h0

h,ε2
)

ε2γ4(1− γ−2ρh,ε2)
,(3.7)

ρh,ε1 := 1− 2hλ0 +

2h0∑
l=2

hlCl
2h0

Ll + ε1h
2, ρh,ε2 := 1 + 2hL+ h2L2 + ε2h

2,

Θ1 := Nρ2h0

h,ε2
γ−4h0(γ2h0 − ρh,ε1)(C

2
δ + 4ρh,ε2ε

−1
2 γ−2d∗2C2

x),

Θ2 := Nρh,ε1ε
−1
2 d∗2γ−4ρh0

h,ε2

2h0−2∑
j=0

(h0 − |j − (h0 − 1)|) γj−2

j∑
l=0

Cl
jh

lLl.
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If ρh,ε1 ∈ (0, 1), γ ∈ (ρ
1

2h0

h,ε1
, 1), K is a given positive integer such that K ≥ K1(h, γ,

ε1, ε2), and

(3.8) g0 > max

{
(1 + 2hd∗)Cx + 2hd∗Cδ

K + 1
2

,

(
Θ1

Θ2

) 1
2

}
,

then under the protocol (3.1)–(3.3) with the (2K + 1)-level uniform quantizer (2.2)
and the scaling function g(t) = g0γ

t, the closed-loop system (3.5) achieves consensus
exponentially, i.e.,

(3.9)

∥∥∥∥∥∥xi(t)− 1

N

N∑
j=1

xj(0)

∥∥∥∥∥∥ = O(γt), t → ∞, i = 1, . . . , N,

where d∗ is a positive constant satisfying d∗ ≥ supk d
∗(k), d∗(k) is the degree of

G(k), T0 is a constant denoted in (A2), Cl
j is the combinatorial number determined

by choosing l numbers from j numbers, and L ≥ supk ‖LG(k)‖.
Proof. See Appendix A.
Remark 3.9. From Theorem 3.8, the closed-loop system can achieve average

consensus exponentially. To obtain a faster convergence rate, we should make γ as

close to ρ
1

2h0

h,ε1
as possible, and choose h, ε1 to make ρh,ε1 as small as possible. However,

from (3.7) it can be seen that the bits needing to be communicated will increase as

γ becomes small, and when γ → ρ
1

2h0

h,ε1
, the bits will become infinite. In practice, we

may have to face limitations on communication bits, which requires us to conduct the
convergence analysis of the system (3.5) under a fixed finite number of quantization
levels. This may result in a slow convergence rate.

Theorem 3.10. Suppose assumptions (A1)–(A3) hold. Then for any integer
K ≥ �M1�+ 1, the following parameter vector set Ω1(K) is nonempty:

Ω1(K) =

{
(h, γ, ε1, ε2) | ρh,ε1 ∈ (0, 1), γ ∈

(
ρ

1
2h0

h,ε1
, 1

)
,M1(h, γ, ε1, ε2) < K +

1

2

}
,

where ρh,ε1 , M1(h, γ, ε1, ε2) are defined as in (3.7), and

M1 = d∗N
1
2

⎛
⎝2h0−2∑

j=0

(h0 − |j − (h0 − 1)|)
⎞
⎠

1
2

·max

⎧⎨
⎩ 2

λ0
,

1

L
1
2 |λ0

√
C2

2h0
− LC2

2h0
| 12

⎫⎬
⎭ .

For any (h∗, γ∗, ε∗1, ε
∗
2) ∈ Ω1(K), under the control (3.1), (3.2), (3.3) with the (2K+1)-

level uniform quantizer (2.2) and the scaling function g(t) = g0γ
∗t, the closed-loop

system (3.5) satisfies

lim
t→∞xi(t) =

1

N

N∑
j=1

xj(0), i = 1, . . . , N,

where g0 is a constant satisfying (3.8).
Proof. Let κ∗ and h be two constants satisfying

max
{
2
(
λ0 − L

√
C2

2h0

)
, 0
}
< κ∗ < 2λ0,

0 < h < min

{
2λ0κ

∗∑2h0−1
l=1 Cl+1

2h0
Ll+1

, 1

}
,

(3.10)
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and set ε1 = κ∗h−1. Then, by the definition of ρh,ε1 in (3.7), we have ρh,ε1 ∈ (0, 1).
This means that there exist h, ε1 > 0 such that ρh,ε1 ∈ (0, 1).

For any given κ∗
1 > 0, set ε2 = κ∗

1h
−1. By the definition of M(h, γ, ε1, ε2) in (3.7)

we have

lim
h→0

M(h, 1, κ∗h−1, ε2)

= lim
h→0

Nd∗2

κ∗(2λ0 − κ∗ −∑2h0−1
l=1 hlCl+1

2h0
Ll+1)

2h0−2∑
j=0

(h0−|j−(h0−1)|)
j∑

l=0

Cl
jh

lLl

+ lim
h→0

Nd∗2h(1− ρ2h0

h,ε2
)

κ∗
1(1 − ρh,ε2)

=
Nd∗2

κ∗(2λ0 − κ∗)

2h0−2∑
j=0

(h0−|j−(h0−1)|).

Thus, it follows that

lim
h→0

(
2(1 + hd∗)M

1
2 (h, 1, κ∗h−1, ε2) + hd∗ +

1

2

)

= 2d∗
(
N
∑2h0−2

j=0 (h0−|j−(h0−1)|)
κ∗(2λ0 − κ∗)

) 1
2

+
1

2
.

From (3.10), by properly choosing κ∗, the above equation can achieve M1 +
1
2 . Thus,

for any given K ≥ �M1�+ 1, there are κ∗ and h∗ satisfying (3.10), and ε∗2 = κ∗
1h

∗−1

such that

2 (1 + h∗d∗)M
1
2 (h∗, 1, κ∗h∗−1, ε∗2) + h∗d∗ +

1

2
<
⌊
M1

⌋
+

3

2
≤ K +

1

2
.

Let ε∗1 = κ∗h∗−1. Then, from the above inequality and (3.7) it follows that

lim
γ→1

M1(h
∗, γ, ε∗1, ε

∗
2) = 2(1 + h∗d∗)M

1
2 (h∗, 1, κ∗h∗−1

, ε∗2) + h∗d∗ +
1

2
< K +

1

2
.

Thus, there is γ∗ ∈ (ρ
1

2h0

h∗,ε∗1
, 1) such that M1(h

∗, γ∗, ε∗1, ε
∗
2) < K+ 1

2 . This together with

Theorem 3.8 implies the theorem.
Remark 3.11. Theorem 3.10 gives a finite lower bound for the quantization level

so that system coefficients can be chosen to make the whole agent system achieve
exponential consensus. Compared with the undirected fixed topology case in [17],
here it is hard to extend the result to the case of any finite quantization level. The
reason is mainly due to the accumulative effect of the encoder-decoder scheme (3.1),
(3.2) designed to adapt for the time-varying topology. An additional estimation term
for the quantization level naturally appears (see the first term of M1(h, γ, ε1, ε2) in
(3.7)), which leads to the lower bound for the required quantization level.

Based on the same idea as the design of the above consensus protocol in the
directed time-varying topology case, the corresponding results for the directed fixed
topology case can be easily obtained. To avoid redundancy, below we will simply
present the communication scheme, the distributed control, and the convergence re-
sults, illustrating only the differences between these and the time-varying case. The
following assumption on the fixed communication graph G is needed.

(A4) G is directed and balanced and contains a spanning tree.
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The communication scheme contains an encoder at the sender side of a noise-free
digital channel (j, i) ∈ EG , and a decoder at the receiver side of the channel (j, i). The
encoder Φj of agent j (j = 1, . . . , N) is defined by

(3.11)

⎧⎨
⎩

ξj(0) = 0,
Δj(t) = q(g−1(t− 1)(xj(t)− ξj(t− 1))),
ξj(t) = g(t− 1)Δj(t) + ξj(t− 1), t = 1, 2, . . . ,

and the decoder Ψi at the receiver side of agent i is defined by

(3.12)

{
x̂ji(0) = 0,
x̂ji(t) = g(t− 1)Δj(t) + x̂ji(t− 1),

where ξj(t) is the internal state of Φj ; Δj(t) is the output of Φj , which will be sent
to the out-neighbors of agent j; x̂ji(t) is the output of Ψi; and g(t) > 0 is a scaling
function. From (3.11) and (3.12), the same recursive expression and initial values of
{ξj(t), t ≥ 0} and {x̂ji(t), t ≥ 0} make ξj(t) = x̂ji(t), which is key to the design of the
following error-compensation consensus protocol.

For the fixed topology case, the error-compensation–type average consensus pro-
tocol (3.3) becomes

(3.13) ui(t) =
∑

j∈N+
i

aij(x̂ji(t)− ξi(t)), t = 0, 1, . . . , i = 1, 2, . . . , N,

and the compact closed-loop system by substituting (3.11)–(3.13) into (2.1) is{
X(t+ 1) = (I − hLG)X(t) + hLGe(t),

X̂(t+ 1) = g(t)Q
[
g−1(t)

(
X(t+ 1)− X̂(t)

)]
+ X̂(t),

(3.14)

where X(t) is defined as in (3.4), X̂(t) = [ξ1(t), . . . , ξN (t)]T , e(t) = X(t) − X̂(t),
Q([y1, . . . , yN ]T ) = [q(y1), . . . , q(yN )]T .

Below, we will analyze the convergence property of the closed-loop system (3.14).
Similar to Theorem 3.8, the key point is to prove that the quantizer (3.11), (3.12)
is never saturated. Intuitively, this can be ensured by choosing the decaying rate
of the scaling function g(t) smaller than that of the consensus algorithm without
quantization. The results corresponding to Theorems 3.8 and 3.10 can be summarized
by the following two theorems.

Theorem 3.12. Suppose assumptions (A3) and (A4) hold. For given positive
constants h, γ, ε3, and g0, let

K2(h, γ, ε3) :=

⌊
M2(h, γ, ε3)− 1

2

⌋
+ 1,

M2(h, γ, ε3) :=
1 + 2hd∗

2γ
+

h
√
NL

2
ρ

1
2

h,ε3

2γε
1
2
3 (γ

2 − ρh,ε3)
1
2

,

ρh,ε3 := 1− 2hλ̄0 +
(
ε3 + L

2
)
h2.

(3.15)

If ρh,ε3 ∈ (0, 1), γ ∈ (ρ
1
2

h,ε3
, 1), K is a positive integer such that K ≥ K2(h, γ, ε3), and

(3.16) g0 > max

{
Cx

K + 1
2

, 2
[(
γ2 − ρh,ε3

) (
C2

x + ε3C
2
δL

−2
)] 1

2

}
,
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then under the control (3.11)–(3.13) with the (2K + 1)-level uniform quantizer (2.2)
and the scaling function g(t) = g0γ

t, the closed-loop system (3.14) satisfies

(3.17)

∥∥∥∥∥∥xi(t)− 1

N

N∑
j=1

xj(0)

∥∥∥∥∥∥ = O(γt) as t → ∞, i = 1, . . . , N,

where λ̄0, L are positive constants satisfying 0 < λ̄0 ≤ λ2(LĜ), L ≥ ‖LG‖, and Ĝ is
the mirror graph of G.

Proof. See Appendix B.
Similar to the discussion in Remark 3.9, from Theorem 3.12 it can be seen that

a trade-off between the quantization level and the convergence rate also exists in
the fixed topology case. However, different from the time-varying topology case, the
following theorem implies that for uniform quantizers with any fixed quantization
level, no matter how large the agent number N is, exponential average consensus can
be achieved by properly choosing system parameters.

Theorem 3.13. Suppose assumptions (A3) and (A4) hold. Then, for any integer
K ≥ 1, the following parameter set Ω2(K) is nonempty:

Ω2(K) =

{
(h, γ, ε3) | h, ε3 > 0, ρh,ε3 ∈ (0, 1), γ ∈

(
ρ

1
2

h,ε3
, 1
)
,M2(h, γ, ε3) < K +

1

2

}
,

where ρh,ε3 and M2(h, γ, ε3) are defined as in (3.15). Furthermore, for any (h∗,
γ∗, ε∗3) ∈ Ω2(K), under the control (3.11)–(3.13) with the (2K + 1)-level uniform
quantizer (2.2) and the scaling function g(t) = g0γ

∗t, the closed-loop system (3.14)
achieves consensus, where g0 is a constant satisfying (3.16).

Proof. We first show there exist h > 0 and ε3 > 0 such that ρh,ε3 ∈ (0, 1), i.e.,

(3.18) 0 < 1− 2hλ̄0 +
(
ε3 + L

2
)
h2 < 1.

Notice that when 0 < h < 2λ̄0

ε3+L
2 and λ̄2

0 − (ε3 + L
2
) < 0, the inequality (3.18) is

satisfied. Then, for all ε∗3 > max{λ̄2
0−L

2
, 0} and 0 < h < 2λ̄0

ε∗3+L
2 , we have ρh,ε∗3 ∈ (0, 1).

From

lim
h→0

⎧⎪⎨
⎪⎩h

√
NL

2

⎛
⎝h2 + ε∗3

−1
(
1− 2hλ̄0 + h2L

2
)

8hλ̄0 − 4h2(ε∗3 + L
2
)

⎞
⎠

1
2

+
1 + 2hd∗

2

⎫⎪⎬
⎪⎭

= lim
h→0

{√
h
√
NL

2
}
· lim
h→0

⎛
⎝ ε∗3

−1 + h
(
h− 2λ̄0ε

∗
3
−1 + hL

2
)

8λ̄0 − 4h
(
ε∗3 + L

2
)

⎞
⎠

1
2

+ lim
h→0

{hd∗}+ 1

2
=

1

2
,

one can see that for any given K ≥ 1, there is h∗ ∈ (0, 2λ̄0

ε∗3+L
2 ) such that

h∗√NL
2

⎛
⎝h∗2 + ε∗3

−1
(
1− 2h∗λ̄0 + h∗2L

2
)

8h∗λ̄0 − 4h∗2(ε∗3 + L
2
)

⎞
⎠

1
2

+
1 + 2h∗d∗

2
< K +

1

2
.
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This together with (3.15) implies

lim
γ→1

M2(h
∗, γ, ε∗3) = h∗√NL

2

⎛
⎝h∗2 + ε∗3

−1
(
1− 2h∗λ̄0 + h∗2L

2
)

8h∗λ̄0 − 4h∗2(ε∗3 + L
2
)

⎞
⎠

1
2

+
1 + 2h∗d∗

2
.

Thus, there is γ∗ ∈ (ρ
1
2

h∗,ε∗3
, 1) such that M2(h

∗, γ∗, ε∗3) < K + 1
2 . Therefore, by Theo-

rem 3.12 we get the results of Theorem 3.13.
Remark 3.14. Theorem 3.13 implies that under the directed fixed communication

topology, by properly choosing the quantizer and gain parameter we can always design
a distributed protocol for each agent to realize an exponential average consensus with
merely 1-bit data communication at each time step for each pair of adjacent agents.

4. Numerical example. In this section, we will give a numerical example to
illustrate the results of section 3.

Example 4.1. Consider a network of three agents with the directed communica-
tion graph G = {V = {1, 2, 3}, EG,AG = [aij ]3×3}, where EG = {(1, 2), (2, 1), (1, 3),
(3, 1)}, a12 = 0.8, a21 = a31 = a23 = 0.4, and aij = 0 if (i, j) �∈ EG . The initial
states of the agents are given by x1(0) = 2, x2(0) = 4, and x3(0) = −3. Set K = 1.
By Theorem 3.13 we can choose h = 0.0165, γ = 0.994, and ε3 = 0.05 such that
(h, γ, ε3) ∈ Ω2(K). g0 is taken as 2.6667, which satisfies (3.16). The evolution of the
states under the protocol (3.11)–(3.13) is shown in Figure 4.1. It can be seen that
under the directed fixed topology G the average consensus is achieved asymptotically
by merely 1-bit data exchange between each pair of adjacent agents at each time step.
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Fig. 4.1. Curves of states under directed fixed topology when K = 1.

When the communication topologies of the agents are dynamically changing, we
consider the time-varying communication graph G(t) = {V , EG(t),AG(t) = [aij(t)]3×3},
where EG(t) = {(1, 2), (2, 1)}, a12(t) = a21(t) = 0.8, aij(t) = 0 if (i, j) �∈ EG(t) when
t = 2k, k = 0, 1, . . . , and where EG(t) = {(1, 3), (3, 1)}, a13(t) = a31(t) = 0.8, aij(t) = 0
if (i, j) �∈ EG(t) when t = 2k + 1, k = 0, 1, . . .. It can be seen that G(t) is balanced

and G2
t =

∑t+1
i=t G(i) has a spanning tree. The initial states of agents are given

by x1(0) = 0.5, x2(0) = 0.8, and x3(0) = −0.4. By Theorem 3.10, for K = 3,
we can choose h = 0.0017, γ = 0.9994, ε1 = 2.302 × 10−8, and ε2 = 2 such that
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(h, γ, ε1, ε2) ∈ Ω1(K). g0 is taken as 0.4693, which satisfies (3.8). The evolution of
the states under the protocol (3.1)–(3.3) is shown in Figure 4.2. It can be seen that
under the time-varying topology sequence {G(t), t = 0, 1, . . .} the average consensus
is achieved asymptotically.
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Fig. 4.2. Curves of states under directed time-varying topologies when K = 3.

5. Concluding remarks. This paper has considered the average consensus of
multiagent systems with digital communication channels under directed time-varying
communication topologies. Encoder-decoder schemes based on uniform quantizers
with scaling are designed for the communications between each pair of agents. Dis-
tributed consensus protocols suitable for the time-varying topology are developed,
and the convergence properties of the closed-loop systems are analyzed. The key
idea of the designed communication scheme is to use a communication feedback to
keep the internal state of the encoder at the sender agent consistent with the output
of the decoder at the receiver agent, so that the quantization communication error of
the state can be compensated. It is shown that for a periodically connected directed
dynamic network and any uniform quantizers with quantization levels bigger than a
certain finite constant, the MASs can achieve consensus exponentially provided the
gain parameter and the scaling function are properly chosen.

In future work, it is worth considering how to weaken assumption (A2) to make
the designed protocols suitable for a larger class of time-varying topology sequences
and ensure simultaneously the use of as few communication data rates as possible.
In addition, the quantized dynamic consensus problem and the cases for higher order
MASs over a random switching topology and noisy digital communication channel,
with additional considerations about asynchronous and time-delay communication,
may also be considered.

Appendix A. Proof of Theorem 3.8. We prove the theorem by the following
three steps.

Step 1: We will transform the coordinate to be the consensus error. Notice that
1T [(LG(t) � Λ(t)) − (LG(t) � Λ(t))T ]1 = 0, and G(t) is balanced. Then, by (3.5)
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we have

(A.1)
1

N

N∑
i=1

xi(t+ 1) =
1

N

N∑
i=1

xi(t) = · · · = 1

N

N∑
i=1

xi(0).

This together with LG(t)1 = 0 implies that the closed-loop system (3.5) can be trans-
formed into the following form:

(A.2) δ(t+ 1) =
(
I − hLG(t)

)
δ(t)− h

[(LG(t) � Λ(t)
)− (LG(t) � Λ(t)

)T ]
1,

where δ(t) and Λ(t) are defined as in (3.4) and (3.6), respectively. Substituting (3.1)
and (3.5) into (3.6) leads to the following recursive expression for λij(t), i = 1, . . . , N :

(A.3) λij(t+ 1) =

⎧⎨
⎩

Mλ
ij(t)− g(t)q

(
g(t)−1Mλ

ij(t)
)

if j ∈ N+
i (t+ 1),

Mλ
ij(t) if j ∈ N+

i \N+
i (t+ 1),

0 otherwise, t = 0, 1, . . . ,

where Mλ
ij(t) = λij(t) + h

[
(LG(t) � Λ(t))− (LG(t) � Λ(t))T

]
1 |j + hLG(t)δ(t) |j .

Let w(t) = g−1(t)δ(t) and zij(t) = g−1(t)λij(t). Then, from (A.2) and (A.3)
we get

w(t + 1) = γ−1(I − hLG(t))w(t) − γ−1h
[
(LG(t) � Z(t))− (LG(t) � Z(t))T

]
1,(A.4)

zij(t+ 1) =

⎧⎨
⎩

γ−1
(
Mz

ij(t)− q(Mz
ij(t))

)
if j ∈ N+

i (t+ 1),

γ−1Mz
ij(t) if j ∈ N+

i \N+
i (t+ 1),

0 otherwise,

(A.5)

where Mz
ij(t) = zij(t) + h

[
(LG(t) � Z(t))− (LG(t) � Z(t))T

]
1 |j +hLG(t)w(t) |j .

Step 2: We will prove that no quantizer is saturated. By (3.1) and (3.2) we have
x̂ij(0) = 0, j ∈ N+

i , i = 1, . . . , N . From (3.8) and assumption (A3) we know that

∣∣Mz
ij(0)

∣∣ ≤ 1

g0
‖X(0)‖∞ +

h

g0
‖LG(0)‖∞ · ‖δ(0)‖∞ + h‖(LG(0) � Z(0))1‖∞

+ h‖(LG(0) � Z(0))T1‖∞ ≤ 1

g0
(Cx + 2hd∗Cδ + 2hd∗Cx) < K +

1

2
.

Thus, no quantizer is saturated at the initial time. Suppose that at time k = 0, 1, . . . , t,
no quantizer is saturated. Then, we can show that no quantizer is saturated at time
t+ 1; i.e., for any j ∈ N+

i , i = 1, . . . , N ,∣∣Mz
ij(t+ 1)

∣∣ = ∣∣zij(t+ 1) + h
[
(LG(t+1) � Z(t+ 1))− (LG(t+1) � Z(t+ 1))T

]
1 |j

+ hLG(t+1)w(t + 1) |j
∣∣ < K +

1

2
.(A.6)

By direct computations we can get LG(k) � Z(k) = Z̄(k) = [z̄ij(k)], where

z̄ij(k) =

{
aij(k)zij(k) if j ∈ N+

i (k),
0 otherwise, k = 1, . . . , t+ 1.

Thus, by (A.5) we have |z̄ij(k)| ≤ aij(k)
2γ and

(A.7)
∥∥(LG(k) � Z(k))1

∥∥
∞ ≤ d∗

2γ
,
∥∥(LG(k) � Z(k))T1

∥∥
∞ ≤ d∗

2γ
, k = 1, . . . , t+ 1.
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For any positive integer m, by (A.4) we have

w((m+ 1)h0) = Φ((m+ 1)h0,mh0)w(mh0)

+

(m+1)h0−1∑
j=mh0

γ−1hΦ((m+ 1)h0 − 1, j)

· [(LG(j) � Z(j))T − (LG(j)� Z(j))
]
1,

where Φ(n+ 1, i) = γ−1(I − hLG(n))Φ(n, i), Φ(i, i) = I. Thus,

‖w((m+ 1)h0)‖2 =wT (mh0)Φ
T ((m+ 1)h0,mh0)Φ((m + 1)h0,mh0)w(mh0)

+ 2wT (mh0)Φ
T ((m+ 1)h0,mh0)

(m+1)h0−1∑
j=mh0

Φ((m+ 1)h0 − 1, j)

· γ−1h
[
(LG(j) � Z(j))T − (LG(j) � Z(j))

]
1+ γ−2h2Imh0

�
= I1 + I2 + γ−2h2Imh0 ,(A.8)

where Imh0 =
∑(m+1)h0−1

j=mh0
1T
[
(LG(j) � Z(j))− (LG(j) � Z(j))T

]
ΦT ((m+1)h0−1, j)·∑(m+1)h0−1

k=mh0
Φ((m+ 1)h0 − 1, k)

[
(LG(k) � Z(k))T − (LG(k) � Z(k))

]
1.

Since G(t), t = 0, 1, . . . , is balanced, by [22, Theorem 7], we have
LG(t)+LT

G(t)

2 =

LĜ(t), where Ĝ(t) is the mirror graph of G(t). Thus, we have LG(i)+LT
G(i)

2 =
∑(m+1)h0−1

i=mh0

LĜ(i) = L∑(m+1)h0−1

i=mh0
Ĝ(i) = LĜ(m+1)h0−1

mh0

, which together with the condition infm≥0 λ
h0

mh0

≥ λ0 > 0 gives

∥∥ΦT ((m+ 1)h0,mh0)Φ((m+ 1)h0,mh0)
∥∥

≤ γ−2h0

⎧⎨
⎩
∥∥∥∥∥∥I − 2h

(m+1)h0−1∑
i=mh0

(LG(i) + LT
G(i)

2

)∥∥∥∥∥∥+
2h0∑
l=2

hlCl
2h0

(
sup
t≥0

‖LG(t)‖
)l
⎫⎬
⎭

≤ γ−2h0

{
1− 2hλ0 +

2h0∑
l=2

hlCl
2h0

Ll

}
.

(A.9)

For any ε1 > 0, by 2xT y ≤ ε1x
Tx+ ε−1

1 yT y for all x, y ∈ R
N , we have

I2 ≤ ε1h
2γ−2h0‖w(mh0)‖2 + ε−1

1 γ−2

(
1− 2hλ0 +

2h0∑
l=2

hlCl
2h0

(
sup
t≥0

‖LG(t)‖
)l
)
Imh0

≤ ε1h
2γ−2h0‖w(mh0)‖2 + ε−1

1 γ−2

(
1− 2hλ0 +

2h0∑
l=2

hlCl
2h0

Ll

)
Imh0 ,

(A.10)

where I2 and Imh0 are given as in (A.8). Noticing (A.7), by direct computations

we can get Imh0 ≤ Nd∗2

γ2

∑2h0−2
j=0 (h0 − |j − (h0 − 1)|)γj−2

∑j
l=0 h

lCl
jL

l, m ≥ 1. This
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together with (A.8), (A.9), and (A.10) renders

‖w((m+ 1)h0)‖2
(A.11)

≤
(
ρh,ε1
γ2h0

)
‖w(mh0)‖2 +

[
γ−2h2 + ε−1

1 γ−2

(
1− 2hλ0 +

2h0∑
l=2

hlCl
2h0

Ll

)]
· Imh0

≤
(
ρh,ε1
γ2h0

)m

‖w(h0)‖2 + Nd∗2

γ2

[
γ−2h2 + ε−1

1 γ−2

(
1− 2hλ0 +

2h0∑
l=2

hlCl
2h0

Ll

)]

·
2h0−2∑
j=0

(h0 − |j − (h0 − 1)|)γj−2

j∑
l=0

Cl
jh

lLl ·
1− (

ρh,ε1

γ2h0
)m

1− ρh,ε1

γ2h0

,

where ρh,ε1 is defined by (3.7). In addition, by (A.4) we have

‖w(t+ 1)‖2 ≤ ρh,ε2γ
−2‖w(t)‖2 + γ−2

[
ε−1
2 (1 + 2hL+ h2L2) + h2

]
· ∥∥[(LG(t) � Z(t))− (LG(t) � Z(t))T

]
1
∥∥2 ,(A.12)

where ρh,ε2 is defined as in (3.7). Thus, from (A.7), (A.12), and ‖(LG(0)�Z(0))1‖∞ ≤
d∗Cx

g0
, we have

‖w(h0)‖2 ≤ NC2
δρ

h0

h,ε2

g20γ
2h0

+
4Nd∗2C2

xρ
h0

h,ε2

g20γ
2h0+2

[
ε−1
2 (1 + 2hL+ h2L2) + h2

]

+
Nd∗2(1− γ−2h0ρh0

h,ε2
)

γ4(1− γ−2ρh,ε2)
· [ε−1

2 (1 + 2hL+ h2L2) + h2
]
.(A.13)

For any given t ≥ 0, define mt = � t
h0
�. Then 0 ≤ t − mth0 ≤ h0. Using (3.8),

(A.11), (A.12), (A.13), and γ ∈ (ρ
1

2h0

h,ε1
, 1), we have

‖w(t+ 1)‖2
(A.14)

≤ ρt+1−mth0

h,ε2
γ−2(t+1−mth0)‖w(mth0)‖2

+

t−mth0∑
i=0

ε−1
2 ρi+1

h,ε2
γ−2(i+1)

∥∥[(LG(t−i) � Z(t−i))− (LG(t−i) � Z(t− i))T
]
1
∥∥2

≤
{
NC2

δρ
2h0

h,ε2

g20γ
4h0

+
4Nd∗2C2

xρ
2h0+1
h,ε2

ε2g20γ
4h0+2

+
Nd∗2ρh0+1

h,ε2
(1 − γ−2h0ρh0

h,ε2
)

ε2γ2h0+4(1− γ−2ρh,ε2)

}(
ρh,ε1
γ2h0

)mt−1

+
Nρh,ε1d

∗2ρh0

h,ε2

ε1γ2h0+4

2h0−2∑
j=0

(h0 − |j − (h0 − 1)|)γj−2

j∑
l=0

Cl
jh

lLl
1− (

ρh,ε1

γ2h0
)mt−1

1− ρh,ε1

γ2h0

+
ρh,ε2Nd∗2(1− γ−2h0ρh0

h,ε2
)

ε2γ4(1− γ−2ρh,ε2)
≤ M,

where M is given by (3.7).
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By the definition of zij(t+ 1) in (A.5) and assumption (A2), we have

(A.15) |zij(t+ 1)| ≤ max

{
1

2γ
, g−1(t+ 1)

∣∣x̂ji(τ
t
ji)− xj(t+ 1)

∣∣} ,

where τ tji = max{t1 ≤ t : j ∈ N+
i (t1)} and t−τ tji ≤ T0. Furthermore, by the definition

of the decoder Ψji, we have

(A.16)
∣∣g−1(τ tji − 1)x̂ji(τ

t
ji)− g−1(τ tji − 1)xj(τ

t
ji)
∣∣ < 1

2
.

Similarly to (A.14) for w(τ tji), by (3.8) and (A.1) we have

∣∣g−1(t+ 1)(xj(t+ 1)− JNX(0))
∣∣ ≤ M

1
2 ,

∣∣g−1(τ tji)(xj(τ
t
ji)− JNX(0))

∣∣ ≤ M
1
2 ,

where M is given by (3.7). Therefore,
∣∣xj(t+ 1)− xj(τ

t
ji)
∣∣ ≤ M

1
2

[
g(t+ 1) + g(τ tji)

]
.

This together with (A.16) implies

g−1(t+ 1)
∣∣x̂ji(τ

t
ji)− xj(t+ 1)

∣∣
= g−1(t+ 1)

∣∣(x̂ji(τ
t
ji)− xj(τ

t
ji))− (xj(t+ 1)− xj(τ

t
ji))
∣∣

≤ g−1(t+ 1)

[
1

2
g(τ tji − 1) +M

1
2 (g(t+ 1) + g(τ tji))

]

≤ M
1
2 +M

1
2 · γ−(T0+1) +

1

2
γ−(T0+2).

Thus, by (3.8), (A.7), (A.14), and (A.15) we have∣∣Mz
ij(t+ 1)

∣∣ ≤ |zij(t+ 1)|+ h
∥∥LG(t+1)w(t + 1)

∥∥
∞

+ h
∥∥[(LG(t+1) � Z(t+ 1))− (LG(t+1) � Z(t+ 1))T

]
1
∥∥
∞

≤ max

{
1

2γ
,M

1
2 +M

1
2 · γ−(T0+1) +

1

2
γ−(T0+2)

}
+

hd∗

γ
+ 2hd∗M

1
2

<

⌊
M1(h, γ, ε1, ε2)− 1

2

⌋
+

3

2
= K1(h, γ, ε1, ε2) +

1

2
≤ K +

1

2
,

where M is defined as in (3.7). Thus, (A.6) is correct.
Step 3: We will prove the exponential consensus of (3.5). Noticing that ‖w(0)‖∞ ≤

Cδ

g0
, by (A.14) we have supt≥0 ‖w(t)‖∞ ≤ max{Cδ/g0,M

1
2 } < ∞. By the definition of

w(t) and γ ∈ (0, 1) we get limt→∞ ‖δ(t)‖∞ = 0. This together with (A.1) leads to the
consensus of (3.5).

From (A.14), δ(t) = g0γ
tw(t), and γ ∈ (ρ

1
2h0

h,ε1
, 1), we have

lim sup
t→∞

‖δ(t+ 1)‖2
γ2(t+1)

≤ g20

{
Nρh,ε2d

∗2(1− γ−2h0ρh0

h,ε2
)

ε2γ4(1 − γ−2ρh,ε2)
+

Nρh,ε1d
∗2ρh0

h,ε2

ε1γ4(γ2h0 − ρh,ε1)

·
2h0−2∑
j=0

(h0 − |j − (h0 − 1)|)γj−2

j∑
l=0

Cl
jh

lLl

}
.

Thus, (3.9) is true.
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Appendix B. Proof of Theorem 3.12. Letw(t) = g−1(t)δ(t), z(t) = g−1(t)e(t).
By LG1 = 1TLG = 0 and g(t) = g0γ

t, we can transform the closed-loop system (3.14)
into the following form:

w(t+ 1) = γ−1(I − hLG)w(t) + γ−1hLGz(t),

z(t+ 1) = γ−1Δ(t),
(B.1)

where Δ(t) = (I + hLG)z(t)− hLGw(t) −Q [(I + hLG)z(t)− hLGw(t)] .
We now prove that no quantizer is saturated. From (3.11) and (3.12) we know

that X̂(0) = 0. Noticing that LG1 = 0, by (3.16) and assumption (A3) we have

‖(I + hLG)z(0)− hLGw(0)‖∞ =

∥∥∥∥X(0)

g0

∥∥∥∥
∞

≤ Cx

g0
< K +

1

2
.

Suppose that when k = 0, 1, . . . , t, no quantizer is saturated, i.e., sup0≤k≤t ‖Δ(k)‖∞
≤ 1

2 . Then, by (B.1) we have

(B.2) sup
1≤k≤t+1

‖z(k)‖∞ ≤ 1

2γ
.

As G is balanced, by [22, Theorem 7] we have
LG+LT

G
2 = LĜ . From assump-

tion (A4) it follows that Ĝ is a strongly connected undirected graph, and hence
λ2(LĜ) > 0 [11]. Noticing that 2xT y ≤ ε3x

Tx+ ε−1
3 yT y for all x, y ∈ R

N , ε3 > 0, we
have

‖w(t+ 1)‖2 = γ−2
[
wT (t)(I − 2hLĜ + h2LT

GLG)w(t)

+ 2hwT (t)(I − hLT
G )LGz(t) + h2zT (t)LT

GLGz(t)
]

≤ γ−2
[
(1− 2hλ̄0 + h2L

2
+ ε3h

2)‖w(t)‖2

+ ε−1
3 zT (t)LT

G (I − hLG)(I − hLT
G )LGz(t) + h2zT (t)LT

GLGz(t)
]

≤
(
ρh,ε3
γ2

)
‖w(t)‖2 + ε−1

3 γ−2ρh,ε3L
2‖z(t)‖2.

By ρh,ε3 ∈ (0, 1), γ ∈ (ρ
1
2

h,ε3
, 1), (B.2), and assumption (A3), we have

(B.3)

‖w(t+ 1)‖2 ≤
(
ρh,ε3
γ2

)t+1

‖w(0)‖2

+

(
ρh,ε3
γ2

)t+1

ε−1
3 L

2‖z(0)‖2 +
t−1∑
i=0

(
ρh,ε3
γ2

)i+1

ε−1
3 L

2‖z(t− i)‖2

≤
(
ρh,ε3
γ2

)t
{
Nρh,ε3C

2
δ

g20γ
2

+
NC2

xL
2
ρh,ε3

ε3g20γ
2

}
+

NL
2
ρh,ε3

4ε3γ2(γ2 − ρh,ε3)

(
1−
(
ρh,ε3
γ2

)t
)

≤ max

{
Nρh,ε3C

2
δ

g20γ
2

+
NC2

xL
2
ρh,ε3

ε3g20γ
2

,
NL

2
ρh,ε3

4ε3γ2(γ2 − ρh,ε3)

}
.
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This together with (3.16) and (B.2) gives

‖(I + hLG)z(t+ 1)− hLGw(t + 1)‖∞
≤ ‖I + hLG‖∞‖z(t+ 1)‖∞ + h‖LG‖ · ‖w(t+ 1)‖

≤ 1 + 2hd∗

2γ
+ hLmax

⎧⎨
⎩
(
Nρh,ε3C

2
δ

g20γ
2

+
NC2

xL
2
ρh,ε3

ε3g20γ
2

) 1
2

,

√
NLρ

1
2

h,ε3

2γε
1
2
3 (γ

2 − ρh,ε3)
1
2

⎫⎬
⎭

= M2(h, γ, ε3) <

⌊
M2(h, γ, ε3)− 1

2

⌋
+

3

2
= K2(h, γ, ε3) +

1

2
≤ K +

1

2
.

Thus, no quantizer is saturated. Noticing that ‖w(0)‖∞ ≤ Cδ

g0
, by (3.16) and (B.3)

we have

sup
t≥0

‖w(t)‖∞ ≤ max

⎧⎨
⎩Cδ

g0
,

√
NLρ

1
2

h,ε3

2γε
1
2
3 (γ

2 − ρh,ε3)
1
2

⎫⎬
⎭ < ∞.

Hence, by the definition of w(t) and γ ∈ (0, 1) we get limt→∞ ‖δ(t)‖∞ = 0. This

together with 1TLG = 0 and 1
N

∑N
j=1 xj(t+1) = 1

N

∑N
j=1 xj(t) = · · · = 1

N

∑N
j=1 xj(0)

leads to (3.17).

From (B.3), δ(t) = g0γ
tw(t), and γ ∈ (ρ

1
2

h,ε3
, 1), we have

‖δ(t+ 1)‖2 ≤ g20γ
2(t+1)

(
ρh,ε3
γ2

)t
{
Nρh,ε3C

2
δ

g20γ
2

+
NC2

xL
2
ρh,ε3

ε3g20γ
2

}

+
Ng20γ

2(t+1)L
2
ρh,ε3

4ε3γ2(γ2 − ρh,ε3)

(
1−
(
ρh,ε3
γ2

)t
)
.

Thus, (3.17) is true.
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